
J .  Fluid Mech. (1987), vol. 185, pp. 483-502 

Pn'nted in Oreat  Britain 

483 

Turbulence in radial flow between parallel disks at 
medium and low Reynolds numbers 
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Department of Mechanical Engineering, Queen's University, Kingston, 

Ontario, Canada, K7L 3N6 

(Received 6 May 1986 and in revised form 12 March 1987) 

The radial flow of air between two closely spaced parallel disks is studied 
experimentally and the behaviour of the flow, especially the turbulence decay 
mechanism, is examined. At high Reynolds numbers the flow resembles fully 
developed turbulent two-dimensional channel flow. A quasi-laminar boundary layer 
is found to gradually replace the viscous sublayer as the Reynolds number decreases. 
At  low Reynolds numbers, the turbulence decays and the flow gradually approaches 
a laminar-type profile. The decay process is shown to be very slow and indications 
of a weak turbulence-generating mechanism is observed even at very low Reynolds 
numbers. Relaminarization, rather than being an abrupt change in the state of the 
flow, is an eventual outcome of the turbulence decay process. 

1. Introduction 
The radial flow of fluids between parallel plates or disks is of both academic and 

industrial interest. The academic interest stems from the continuous increase in the 
cross-sectional area of the flow which results in a gradual decrease in the Reynolds 
number. The flow can therefore be considered a special case of plane two-dimensional 
channel flow with the potential for relaminarization. The industrial interest is related 
to the flow in radial diffusers, non-rotating air bearings, disk-type heat exchangers 
and pneumatic micrometers. 

The laminar radial flow between parallel disks has been studied by many 
investigators ; for example, McGinn (1955), Livesey (1959), Savage (1964), Jackson 
& Symmons (1966), Ishizawa (1965, 1966), Moller (1963) and Mochizuki k Yang 
(1983,1985), Mochizuki, Yang & Tanaka (1986). The major emphasis of these studies 
was to determine, or theoretically predict, the pressure recovery of the flow and to 
present a criterion for separation which occurs since the fluid normally must undergo 
a sharp 90" bend before it enters the space between the disks. These studies have 
produced theoretical expressions for the pressure recovery which are, except in the 
inlet region, in accord with the experimental values. Various empirical criteria for the 
Reynolds number below which separation does not occur have also been put forward 
(for example Re,,R1 = 11.0 (Mochizuki & Yang 1983, 1985) where Re,,R1 = Re, 
(2h/R$ and Re, is the Reynolds number based on the local mean velocity U and 
radius r ,  R, is the inlet radius and h is half the gap width between the disks). 

Mochizuki and co-workers also have investigated, through flow visualization and 
laminar calculations using finite-volume techniques, the flow through parallel disks. 
They provide qualitative arguments about the evolution and the stability of the flow 
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as it expands from a condition of uniform inlet velocity profile a t  the entrance to the 
disks. 

Moller (1963) used Pitot static tubes to obtain the first extensive measurements of 
the mean velocity characteristics for the case of turbulent flow. He suggested that, 
in radial flows, relaminarization occurs and is due to the thickening of the viscous 
sublayer. Peube, as reported by Kreith (1966), established analytically that the 
velocity profiles in laminar radial flows contain an inflexion point at radial distances 
less than a critical value rC, obtained from 

L k ( $ ) ,  h 

where Q is the volume flow rate, and k = 0.218. Chen & Peube (1964) suggested the 
idea of a critical radius for the inception of reverse transition. Kreith (1966), too, 
argued that reverse transition cannot take place unless the flow condition permits 
the existence of a laminar velocity profile. He then suggested (1) with k = 0.28 aa the 
criterion for the radius after which relaminarization is achieved. Later experiments 
by Bakke & Kreith (1969) concluded that relaminarization is only approached but 
never reached. The critical-Reynolds-number criteria for relaminarization, presented 
by Moller (1963) and Kreith (1966), were also invalidated by Bakke & Kreith. 
These - latter authors reasoned that since the radial turbulence-energy production 
( - u’2dU/dr) is negative, the turbulence energy increases in the radial direction ; 
however, note that this turbulence-energy term, although positive, in most relevant 
cases is small when compared to the turbulence-dissipation term, and it can not be 
considered the sole turbulence-maintaining mechanism in radial flows. 

Higgins (1974  using hot-wire anemometry, measured the turbulence-intensity 
variations in radial flow between parallel disks. Based on these measurements, he 
suggested a value of Re,,, = 8.0 for the onset of the decay process (where Re,,, = Re, 
(2h/r)  is the reduced Reynolds number and 2h is the gap width). Higgins did not 
study the characteristics of this decay. 

The purpose of the present contribution is to provide the first comprehensive study 
of the radial flow problem at low to medium Reynolds numbers. The apparatus 
design allowed for a fairly large local Reynolds number (Re,,, = 2Uh/v) drop for each 
flow rate. First-, second-, third- and fourth-order moments of the fluctuating 
velocity, probability density and spectra are provided. Relevant comparisons are 
made with two-dimensional channel flows and a physical model for the decay process 
is suggested that incorporates the concepts of near-wall flow ‘structures ’ aa used in 
boundary layers (see, for example, Zaric 1975). 

2. Experimental procedure 
The apparatus used for the present study (figure 1) consisted of two 2.5 cm thick, 

accurately surface finished, aluminium plates, each 1.2 m in diameter (2R,). The 
disks were held apart by means of six equally spaced, precisely machined spacer 
blocks providing a gap width 2h of 1.0cm. The flow was provided by a 5 h p  
centrifugal fan and was passed through a bleeding valve, a settling box, a PVC pipe 
(containing honeycomb) and a settling chamber (containing a filter and an array of 
screens, and with a diametrical contraction ratio of 26: 1). A shaped inlet and an inlet 
piece, designed according to the recommendations of Moller (1966), were used to 
direct the flow between the disks. On the upper disk, 21 pressure taps were placed 
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FIUTJRE 1. Schematic of the apparatus. 

along the disk radius for measuring the static pressure distribution. Six additional 
pressure taps, drilled in a line normal to the main pressure taps, provided a means 
for a continuous check on flow symmetry. 

A T shaped slot, cut into the upper plate, provided access to various radial 
locations. Various types of probes were mounted on a traversing mechanism 
consisting of a slide (matched with the slot in the upper plate), and a feed micrometer 
connected to the probe holders. Several other matching slides, accurately machined, 
were then used to cover the slot when the measurement probes were put in place. 
When all slides were in place, the lip between the slides and the upper plate was 
within kO.01 mm. 

The uniformity of the flow was checked in several ways: mean velocity 
measurements at the exit of the settling chamber, static pressure distributions, mean 
velocity measurement around the outside perimeter of the disks, and by calculating 
the momentum balance, at various radii and Re, using the mean velocity 
measurements. The swirl-free state of the flow was verified using a specially designed 
Pitot static tube. Uniform and symmetric flow was difficult to achieve ; even so, the 
worst indication of non-uniformity was a 5 %  imbalance between the momentum 
calculated in the upstream (r /R2 = 0.5) and exit (r /R2 = 1.0) planes at the lowest 
Reynolds number. This slight difference was believed to be due to the measurement 
errors at that very small Reynolds number (Re, = 18000, or Rein % 19000, where 
Rein = 2R, Uin/v).  

DISA Pi2 single-wire boundary-layer probes and DISA Pi5 slant-wire probes, 
together with DISA 55M01 CTA bridges were utilized to measure the mean and 
fluctuating components of the velocity. The error in measuring the mean and r.m.s. 
velocities caused by the lateral velocity component was calculated from relationships 
given by Comte-Bellot (1965); as a result, it is estimated that, at the highest 
intensities measured, the error could be as high as 15%. The error in the slant-wire 
measurements is higher and this error and its implications will be discussed later. 

Pressure measurements were performed using a 0-10 in. (water), Datametric 
pressure transducer. A floating-element servo-balance mechanism, Nguyen et al. 
(1984), was used for wall-shear-stress measurements a t  the highest volumetric flow 
rates; however, this mechanism proved inadequate for measuring the wall shear 



486 

15 

13 

M .  Tabatabai and A .  Pollard 

r 

+ Y 
r! + * 

X c * 
X & 

X + * - 
x t  

X C  * - 
xx ++ *& 

xx t C  * *  
x* ++ ** - 

x +  * 
x +  * - x e  * 

.t 
El s ++ ** 

n 

+ 0.55 
* 0.68 

x 0.45 

= 7.55+2.69WE8 

71 1 I I I 
0 1 2 3 4 

CP 

FIGURE 2. The linearized calibration curve. 

stress at lower Reynolds numbers. In these cases, estimates of wall shear stress were 
obtained using the mean velocity gradient in the near-wall region. At high Re, the 
wall shear stress obtained from the slope of the mean velocity profiles corresponded 
to within 5 % of those obtained using the floating-element device. This discrepancy 
increased with decreasing Re ; and, at the lowest Re, discrepancies of order 30 % are 
possible. 

For the present investigation it was necessary to measure very low velocities using 
hot-wire probes. Calibration of hot-wire probes at low velocities using a conventional 
jet flow device proved to be both impractical and inaccurate. To calibrate the probes, 
they were traversed in a stationary fluid at  a constant velocity using a self-contained 
computer-controlled motorized cart (Tabatabai, Pollard & McPhail 1986) ; it was 
used in conjunction with the jet flow device. Figure 2 shows a typical linearized 
calibration curve. Note that in the lower range of the velocities an exponent of 0.68 
in King’s law provides a more linear representation for the curve. The magnitude of 
this exponent depends on the velocity range and increases as the velocity becomes 
smaller. 

Hinze’s relationship (U,,, = U2(cos2a+ k% sin2 a)) was used to describe the 
effective velocity felt by the slant wire. The parameter ka was determined using the 
procedure of Brunn & Tropea (1980). 

The output of the anemometer was corrected for the temperature drift according 
to Bearman (197 1) and also for the effects of conduction in the proximity of the wall, 
as outlined below. 

The location of the hot-wire probe was determined by measuring its distance from 
its reflection from the aluminium plate through the reticule of a telescope. The error 
involved in this procedure was estimated to be about 0.01 cm, or about 1 % of the 
gap width . 

Data acquisition and reduction was performed using a PDPll/34 minicomputer 
employing a 12 bit A/D converter. In general about 1024 samples, taken at slow 
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sampling rates, were used to obtain the moments of the fluctuating signal. The error 
in the mean and r.m.s. velocity measurements due to sampling size was 
approximately 4 'YO and 6 'YO respectively, for a confidence level of 97 'YO, using the 
method suggested by Bates & Hughes (1977). For the determination of the fourth- 
order moments, Perry (1982) argues that an integration time five times that of the 
second-order moments is required. Therefore, for the lowest Re, in order to increase 
the accuracy of the skewness, flatness and probability distributions, 20000 samples 
(with a sampling rate of 25Hz) were used. At these same Re, the signal was 
conditioned (d.c. suppressed and amplified) before passing through the AID 
converter. 

The spectrum estimates were obtained by block averaging 64 blocks of data, each 
block generally containing 1024 samples. Sampling rates, varying from 1 to 4 kHz, 
depending on the flow Re, were used for collecting spectra. The use of 64 blocks 
decreased the bias in the Fourier transform to below 4%. The major source of error 
is then the length of the sensing element. This error was found to be as large as 15 'YO 
at the higher wavenumbers, according to the method proposed by Wyngaard 
( 1968). 

3. Presentation and discussion of results 
Mean velocity distributions a t  three Re, are shown in figure 3 (a-c). Re,, ,. in these 

figures is the Reynolds number based on the gap width 2h and local mean velocity 
U at a given radius r. The asymmetry of the flow displayed in those data in figure 3 (a)  
is a result of the flow negotiating the 90' bend at  the inlet. This asymmetry is 
gradually dissipated by the cross-stream momentum transfer ; and the radius at 
which this asymmetry disappears decreases with the volumetric flow rate. From this 
figure it can be seen that at high Rel,, the velocity distributions at various radial 
positions fall within a relatively narrow band. As the volumetric flow rate decreases, 
the change in the shape of the mean velocity, with increasing radius, becomes more 
evident : viscous forces begin to dominate those of inertia and the flow tends to a 
parabolic profile that is reminiscent of laminar channel flow. 

Profiles of U,,,/U,, at various Re are shown in figure 4. Note that at very low 
Reynolds numbers the ratio of mean to maximum velocity goes below a value of 0.66, 
which would correspond to a parabolic-type distribution. This is due to  the inflexion 
in the near-wall region of the mean velocity profile at low Reynolds numbers; in the 
literature contradictory evidence for its existence can be found. Higgins (1975) did 
not mention its existence, although a close examination of his velocity profiles at the 
smallest Reynolds number does reveal a slight inflexion. Low-Reynolds-number 
measurements of Bakke & Kreith (1969) and Bakke, Kreider & Krieth (1973), 
display strong inflexions, which are believed to be augmented by the existence of 
large wall-proximity errors. The wall-proximity correction procedures available in 
the literature have been obtained for fully developed turbulent wall flows ; see, h a d  
& Kassab (1986) and the references therein. These corrections were deemed not 
suitable for the present transition-type flow. Instead, the wall-proximity error was 
deduced by first creating a two-dimensional channel flow between the disks of the 
present apparatus. Theae data displayed no points of inflexion when corrected using 
a modified form of the Van der Hegge Zijnen corrections (see, for example, Vagt 
1979). The radial-flow raw data were subsequently corrected in an analogous 
manner. In  this way, the influence of turbulence generated at the inlet bend, and 
other possible extrinsic influences, could be accounted for, even at low Reynolds 
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FIGURE 3 ( a , b ) .  For caption see facing page. 

numbers. Even so, the present results display inflexion points. This topic will be 
returned to later. 

Also shown in figure 4 is the typical variation of mean to maximum velocity for 
a plane two-dimensional flow deduced from Pate1 & Head (1969), where it can be seen 
that for the case of channel flow the transition region is confined to a relatively 
narrow range of Re, while that for the present situation is much broader. Clearly 
laminar-to-turbulent transition is a more catastrophic event than turbulent-to- 
laminar transition. 
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Figure 5 shows the variation of Re,, based on the friction velocity and the gap 
width, versus Rel,,. The near-wall velocity gradients were used to estimate the wall 
shear stresses. Note, however, that at Re = 155000, the wall shear stress was 
obtained using the floating-element device ; it is evident that data from this device 
are in reasonable accord with those obtained using the near-wall velocity-gradient 
method. The present data are seen to be in agreement with those data from channel 
flows. 
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The skin friction in radial flow is defined by the relation dP/dr = &I U2(C,/2h) and 
can be written in terms of the wall properties of the flow as &’, = (U , /U)2 .  Figure 6 
shows the variation of the skin friction at various Relsr. At higher Reynolds numbers, 
the skin-friction curve is compared with C, = 0.0376Re-i, which is the relationship 
obtained in channel flows, Pate1 & Head (1969). The value of the skin friction 
increases rapidly at  lower Reynolds numbers and displays a transition- type 
behaviour between 600 < Re,,, < 1OOO. The uncertainty in the measurements at the 
lowest Re prevents any comparison with known laminar-type skin-friction 
relationships (e.g. C, = 12/Re,,, as the equivalent for two-dimensional channel flow) 
or categorically relating the different slopes observed at  the smaller Re to the 
behaviour of the flow. 

Figure 7 (a, b) shows the mean velocities, normalized with the friction velocity, at 
two Re,. For comparison, the theoretical velocity distributions in the viscous 
sublayer : 

and the logarithmic distribution : 
u+ = z+, (2) 

(3) u+ = A log,, X+ +B, 

are provided on the figure. The values of A and B are taken as their standard, zero- 
pressure-gradient values (A = 5.5 and B = 5.45) even though it has long been 
recognized that a non-zero pressure gradient can affect the magnitude of these 
constants; see, for example, McDonald (1969) or Pfeil & Sticksel (1982). 

Turbulence intensities, normalized with the maximum velocity across the gap, are 
shown in figure €!(a%). At higher Reynolds numbers the maximum value of the 
intensities are in agreement with those found in two-dimensional channel flows 
(Clark 1968). At lower Reynolds numbers, and as the flow moves downstream, the 
location of the point of maximum intensity moves away from the wall; moreover, 
with increasing radius, its magnitude decreases. Figures 9 and 10 show these 
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variations more clearly. This behaviour indicates a gradual increase in the size of the 
viscosity-dominated region and a decrease in the rate of energy production in the 
viscous sublayer with increase in radius. Note that at  Re, = 18000 and at  the last 
measuring station (figure 8c), the intensity distribution indicates that the maximum 
value is located on the gap centreline. This behaviour has been attributed to the 
thickening of the viscous sublayer (Moller 1963 ; Bakke & Kreith 1969) ; however, this 
argument cannot be strictly correct. The velocity distribution in the viscous sublayer 
is expressed as being proportional to the distance from the wall and is a linear curve. 
A linear growth of the viscous sublayer would therefore result in a discontinuous 
velocity distribution across the gap. It is observed that as Re drops, the velocity 
profile increasingly resembles a laminar-type profile; thus, it is more plausible to 
assume that during the decay process there occurs a transformation of the viscous 
sublayer to a laminar-type (or quasi-laminar) boundary layer. The distributions of 
the intensities normalized with the wall shear stress and probability densities for the 
low-Re cases, and for other comparisons to be presented shortly, tend to support the 
latter statement. 

From figure 10 it can be seen that the rate of decay of the intensities, even for 
individual Re,, is not constant. This behaviour differs from that observed in two- 
dimensional channel flows where a logarithmic drop in the intensities has been 
observed (Badri Narayanan 1968). 

Figure 11 shows the distribution of the r.m.8. values of the velocity fluctuations, 
normalized with the friction velocity, against z+. At higher Re, the value of the 
maximum normalized intensities ( k: 2.8) and their location (z rn 13) are in good 
agreement with the channel flow data of Clark (1968). These plots illustrate again the 
drop in magnitude of the intensities with Reynolds number and radius. In addition, 
they show clearly that the location of the point of maximum intensity is always at 
about the same position, irrespective of the radial location and Reynolds number. 
This tends to support the argument for the existence of a quasi-laminar boundary 
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layer and implies the presence of a turbulence mechanism which occurs at low 
Reynolds numbers, but with similarities to that found a t  higher Reynolds numbers. 

The production of turbulence, according to Reynolds formulation, is the result of 
work done by the turbulence shear stress against the mean velocity gradient. The 
present shear-stress measurements, although approximate owing to the relatively 
large size of the probe sensor compared to the gap width, are, to  the authors' 
knowledge, the first such measurements in this type of flow. Estimates of turbulence 
shear stresses, normalized with the square of the maximum mean velocity across the 
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gap, are presented in figure 12 (a, b). These data are not error free : a consequence of 
a velocity gradient across the sensor, which results in an underestimation of the shear 
stresses, particularly in the wall region. The absolute value of the error can be as high 
as 40 % (at the point closest to the wall) ; however, as the change in the shape of the 
mean velocity profiles between different radii is small, it is believed that these data 
can be used for a qualitative assessment of the decay of the shear stresses. From 
figure 12 it can be seen that at large Re,,, the point of maximum shear stress is 
located close to the wall where measurements were not possible. As the Reynolds 
number drops below the transition Reynolds number (corresponding to that of two- 
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FIGURE 9. Variation of the point of maximum turbulence intensity with Re,,, for various Re,. 

dimensional channel flow, Pate1 & Head 1969) this point moves away from the wall, 
all the while decreasing in magnitude. 

The distributions of the energy production rate across the gap have been estimated 
and are presented in figure 13 (a, b). Note the presence of a small but distinct energy 
production even at  the smallest Rel,,. Also note the good agreement between the 
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location of the point of maximum production in figure 13(b) and the point of 
maximum intensity at a similar Re,,, from figure 9. 

Probability density distributions were obtained, and those distributions for 
Re = 18000 are shown in figure 14. In general, the probability distributions display 
behaviour typical of turbulent two-dimensional channel flow (Eckelmann 1974), i.e. 
large positive skewness close to the wall, a small negative skewness as the distance 
from the wall increases and a gradual approach to zero skewness as the centreline is 
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(a) Re,,, = 91000; ( b )  36000. 

approached. This type of behaviour is clearly observed in figure 14 (a) (corresponding 
to Re,,, = 560) and it persists, although much more weakly, in the downstream 
direction at the same Re, (corresponding to Rel,, = 285, figure 14b). The implications 
of these distributions will be discussed below. 

The spectral distributions on the centreline at radial locations r/R,  = 0.5 and 0.98, 
normalized with A, are plotted in figure 15 for various Re. A is an integral scale 
obtained from 

(4 )  
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FIQURE 13. Distributions of the turbulent energy-production rate across the upper half-gap : 
(a)  Re,,, = 91OOO; (b )  36000. 

where E(n) is the frequency spectrum and n is the frequency. Note the excellent 
similarity in the spectral distributions obtained at Re, = 155000 and to some extent 
at Re, = 31 OOO. Previous studies on the turbulence decay in pipe and channel flows 
(Laufer 1962 and Badri Narayanan 1968, respectively) have produced similar 
distributions. The latter investigator suggested that the similarity in the spectrum 
data would result from presuming a local equilibrium in the flow. Figure 15 also 
shows that similarity no longer exists as Re decreases; and, as the flow moves 
downstream, the energy at the higher wavenumbers decreases, indicating that the 
production of turbulence is becoming dominated by dissipation. Hinze (1975) 
obtained the following relationship, between the spectrum at time t ,  for the case of 
isotropic turbulence assuming the interaction among eddies of various sizes is 

(5) 
small : 

E(k, t )  = E(k,to) exp{-22vk(t-to)}, 

where to is some reference time. Based on this equation the decrease in the kinetic 
energy occurs at a higher rate for smaller eddies compared with the decay rate for 
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FIQURE 14 (a,b).  Probability density distributions at Re,,, = 18000; sample size 20000. 

larger eddies. Utilizing Taylor's hypothesis for relating time to length, the same type 
of behaviour can be observed from the present results. In all cases examined, the low- 
wavenumber energy shows a relatively smaller decrease as the flow moves 
downstream. Therefore, even at  low Re, where the production of turbulence was 
found to be very small, there is, clearly, a persistent large-scale structure. 
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4. Further discussion 
Here, use will be made of the wealth of information provided by previous work on 

two-dimensional channel flows. While this can provide insight into the behaviour of 
the present flow, the differences between a two-dimensional channel flow and a radial 
flow should be remembered. Note also that the concept of a fully developed flow does 
not strictly hold for radial diffusers ; furthermore, the geometrical limitation of the 
apparatus does not permit measurements at r/2h of greater than 60. 

Flow-visualization studies in wall-bounded turbulent flows (Kline et d. 1967 ; Kim, 
Kline & Reynolds 1971, among others) have shown the occurrence of a 'bursting' 
process in the wall region. This process is often connected to vortices in the near-wall 
region, particularly to 'hairpin '-types ; see, for example Zaric (1982). The bursting 
process consists of three main phases : ejection of low-momentum flow from the wall 
vicinity ; the breakup of the ejected flow at some distance from the wall corresponding 
to the edge of the viscous sublayer; and the inrush of the high-momentum fluid 
towards the wall. A positive value of the skewness factor, clobe to the wall, is believed 
to be the consequence of the inrush phase while a negative skewness further from the 
wall could reflect the ejection process (Zaric 1975). Radial flow at high Reynolds 
numbers exhibits characteristics very similar to channel flows. Mean velocity, 
intensity and spectrum profiles correspond closely to fully turbulent two-dimensional 
channel flows and the probability distributions display indications of the inrush and 
ejection phases. Although it has yet to be established in the present flow situation, 
let it  be assumed that the bursting-process exists in the flow. 

As the flow Reynolds number decreases, the viscous forces begin to dominate the 
flow as evidenced by the gradual change in the shape of the mean velocity profiles 
from a f power-law type to one that is parabolic in shape, and by the increase in the 
physical size of the laminar-like near-wall region as indicated by the movement of the 
point of maximum intensity away from the wall. Assuming that the point of zero 
skewness and maximum intensity correspond to the breakup location of the ejected 
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flow, it can be concluded that the breakup occurs further away from the wall; and, 
since the flow Re decreases as the radius increases, the breakup occurs under weaker 
inertial forces. Thus, there is a decrease with Re in the rate at which turbulence 
energy is produced (see figure 13). Although the skin-friction distribution shows a 
transition region (turbulent-to-laminar) at Re,, x 600, some turbulence charac- 
teristics, such as a skewed probability distribution, turbulence-intensity distri- 
bution with a maximum at z+ x 13 and a small energy production rate are 
observed even at smaller Reynolds numbers. It is hypothesized that the persistent 
large-scale structure is responsible for this behaviour by delaying the formation of a 
truly laminar boundary layer ; that is, these disturbances provide the necessary 
element for the continued existence of the ejection phase of the bursting process. 

At higher Re, the transport of low-momentum fluid to higher-velocity regions 
further away from the wall produces a large contribution to the turbulent shear 
stress and initiates the breakdown of the vortices at  their tips. At low Re, however, 
the vortices must elongate much further to reach the point where this breakdown can 
occur. Note that the ejection process at higher Re produces a local velocity deficit 
which is eventually balanced in the inrush phase of the bursting cycle (Zaric 1975). 
In the present situation, the inflexion in the mean velocity profile observed in figure 
3 (c) can in fact be a consequence of an inrush phase : fluid that is removed during the 
ejection phase is not totally replaced by that during the inrush phase; however, note 
that mass is conserved at any given radius. As Re drops even further, it is likely that, 
although the ejection phase occurs, nowhere across the gap does the tip of a hairpin 
vortex come under strong enough shear to breakdown. Indeed, as the tip approaches 
the centreline, as it must do as Re approaches zero, the possibility of breakdown is 
completely eliminated since the velocity gradient there is zero. 

The spectrum results of figure 15 show that at  Re, = 18000, somewhere between 
0.5 < r /R,  < 0.98 the turbulence production is completely halted. The flow, after 
passing through this region, will still contain residuals of turbulence produced 
upstream in the high-Re portion of the flow which have to be dissipated before a truly 
laminar state can be reached. The results of the measurements at  the lowest Re of 
figure 14(b), when compared to the corresponding upstream measurement of figure 
14(a) indicate the approach to this state. Relaminarization is therefore believed to 
occur, not as a catastrophic process occurring at  a given critical radius, but as a very 
slow turbulence decay process. 

5. Conclusion 
A comprehensive study of the radial flow between parallel disks at medium and 

low Reynolds numbers was carried out. At higher Reynolds numbers the flow 
displays characteristics very similar to those of fully developed channel flows. At 
these Reynolds numbers, the inertial forces are large enough that, at different radial 
locations, no significant change in the flow behaviour was observed, except that 
corresponding to the development of the flow. As the Reynolds number decreaaes, 
however, the thickness of the viscosity-dominated region increases, at a rate 
approximately proportional to the inverse of the local Reynolds number. It was 
suggested that during this growth process, the viscous sublayer is transformed into 
a quasi-laminar boundary layer. The turbulence state decays, but this decay, unlike 
that observed in a channel flow, is not logarithmic along the whole radius and was 
found to be more complex (in the present range of r/h at  least two logarithmic rates 
of decay can be observed at  low volumetric flow rates). The spectrum results 



Turbulence in radial $ow between parallel disks 501 

displayed a local equilibrium at high and medium Re, which is eventually destroyed 
as the thickness of the quasi-laminar boundary layer increases towards the gap 
centreline. The spectrum distributions also indicate the persistence of a large-scale 
structure throughout the flow, which is believed to be the mechanism that maintains 
the turbulence characteristics of the quasi-laminar sublayer. Relaminarization is the 
final outcome of the decay mechanism. 
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